Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Figures and Tables:

Abstract:The approximation properties of infinitely wide shallow neural networks heavily depend on the choice of the activation function. To understand this influence, we study embeddings between Barron spaces with different activation functions. These embeddings are proven by providing push-forward maps on the measures $\mu$ used to represent functions $f$. An activation function of particular interest is the rectified power unit ($\operatorname{RePU}$) given by $\operatorname{RePU}_s(x)=\max(0,x)^s$. For many commonly used activation functions, the well-known Taylor remainder theorem can be used to construct a push-forward map, which allows us to prove the embedding of the associated Barron space into a Barron space with a $\operatorname{RePU}$ as activation function. Moreover, the Barron spaces associated with the $\operatorname{RePU}_s$ have a hierarchical structure similar to the Sobolev spaces $H^m$.

Via

Figures and Tables:

Abstract:Reproducing Kernel Hilbert spaces (RKHS) have been a very successful tool in various areas of machine learning. Recently, Barron spaces have been used to prove bounds on the generalisation error for neural networks. Unfortunately, Barron spaces cannot be understood in terms of RKHS due to the strong nonlinear coupling of the weights. We show that this can be solved by using the more general Reproducing Kernel Banach spaces (RKBS). This class of integral RKBS can be understood as an infinite union of RKHS spaces. As the RKBS is not a Hilbert space, it is not its own dual space. However, we show that its dual space is again an RKBS where the roles of the data and parameters are interchanged, forming an adjoint pair of RKBSs including a reproducing property in the dual space. This allows us to construct the saddle point problem for neural networks, which can be used in the whole field of primal-dual optimisation.

Via