Abstract:Chinese Spelling Correction (CSC) aims to detect and correct spelling errors in Chinese sentences caused by phonetic or visual similarities. While current CSC models integrate pinyin or glyph features and have shown significant progress,they still face challenges when dealing with sentences containing multiple typos and are susceptible to overcorrection in real-world scenarios. In contrast to existing model-centric approaches, we propose two data augmentation methods to address these limitations. Firstly, we augment the dataset by either splitting long sentences into shorter ones or reducing typos in sentences with multiple typos. Subsequently, we employ different training processes to select the optimal model. Experimental evaluations on the SIGHAN benchmarks demonstrate the superiority of our approach over most existing models, achieving state-of-the-art performance on the SIGHAN15 test set.
Abstract:Currently, a substantial volume of document data exists in an unstructured format, encompassing Portable Document Format (PDF) files and images. Extracting information from these documents presents formidable challenges due to diverse table styles, complex forms, and the inclusion of different languages. Several open-source toolkits, such as Camelot, Plumb a PDF (pdfnumber), and Paddle Paddle Structure V2 (PP-StructureV2), have been developed to facilitate table extraction from PDFs or images. However, each toolkit has its limitations. Camelot and pdfnumber can solely extract tables from digital PDFs and cannot handle image-based PDFs and pictures. On the other hand, PP-StructureV2 can comprehensively extract image-based PDFs and tables from pictures. Nevertheless, it lacks the ability to differentiate between diverse application scenarios, such as wired tables and wireless tables, digital PDFs, and image-based PDFs. To address these issues, we have introduced the PDF table extraction (PdfTable) toolkit. This toolkit integrates numerous open-source models, including seven table recognition models, four Optical character recognition (OCR) recognition tools, and three layout analysis models. By refining the PDF table extraction process, PdfTable achieves adaptability across various application scenarios. We substantiate the efficacy of the PdfTable toolkit through verification on a self-labeled wired table dataset and the open-source wireless Publicly Table Reconition Dataset (PubTabNet). The PdfTable code will available on Github: https://github.com/CycloneBoy/pdf_table.