Abstract:With the development of Artificial Intelligence, numerous real-world tasks have been accomplished using technology integrated with deep learning. To achieve optimal performance, deep neural networks typically require large volumes of data for training. Although advances in data augmentation have facilitated the acquisition of vast datasets, most of this data is concentrated in domains like images and speech. However, there has been relatively less focus on augmenting time-series data. To address this gap and generate a substantial amount of time-series data, we propose a simple and effective method that combines the Diffusion and Transformer models. By utilizing an adjusted diffusion denoising model to generate a large volume of initial time-step action data, followed by employing a Transformer model to predict subsequent actions, and incorporating a weighted loss function to achieve convergence, the method demonstrates its effectiveness. Using the performance improvement of the model after applying augmented data as a benchmark, and comparing the results with those obtained without data augmentation or using traditional data augmentation methods, this approach shows its capability to produce high-quality augmented data.
Abstract:This work presents P2P-Insole, a low-cost approach for estimating and visualizing 3D human skeletal data using insole-type sensors integrated with IMUs. Each insole, fabricated with e-textile garment techniques, costs under USD 1, making it significantly cheaper than commercial alternatives and ideal for large-scale production. Our approach uses foot pressure distribution, acceleration, and rotation data to overcome limitations, providing a lightweight, minimally intrusive, and privacy-aware solution. The system employs a Transformer model for efficient temporal feature extraction, enriched by first and second derivatives in the input stream. Including multimodal information, such as accelerometers and rotational measurements, improves the accuracy of complex motion pattern recognition. These facts are demonstrated experimentally, while error metrics show the robustness of the approach in various posture estimation tasks. This work could be the foundation for a low-cost, practical application in rehabilitation, injury prevention, and health monitoring while enabling further development through sensor optimization and expanded datasets.