Abstract:Ontological Knowledge Bases (OKBs) play a vital role in structuring domain-specific knowledge and serve as a foundation for effective knowledge management systems. However, their traditional manual development poses significant challenges related to scalability, consistency, and adaptability. Recent advancements in Generative AI, particularly Large Language Models (LLMs), offer promising solutions for automating and enhancing OKB development. This paper introduces a structured, iterative methodology leveraging LLMs to optimize knowledge acquisition, automate ontology artifact generation, and enable continuous refinement cycles. We demonstrate this approach through a detailed case study focused on developing a user context profile ontology within the vehicle sales domain. Key contributions include significantly accelerated ontology construction processes, improved ontological consistency, effective bias mitigation, and enhanced transparency in the ontology engineering process. Our findings highlight the transformative potential of integrating LLMs into ontology development, notably improving scalability, integration capabilities, and overall efficiency in knowledge management systems.




Abstract:Measurement of the semantic relatedness or likeness between terms, words, or text data plays an important role in different applications dealing with textual data such as knowledge acquisition, recommender system, and natural language processing. Over the past few years, many ontologies have been developed and used as a form of structured representation of knowledge bases for information systems. The calculation of semantic similarity from ontology has developed and depending on the context is complemented by other similarity calculation methods. In this paper, we propose and carry on an approach for the calculation of ontology-based semantic similarity using in the context of a recommender system.