Abstract:Deep learning has transformed computer vision but relies heavily on large labeled datasets and computational resources. Transfer learning, particularly fine-tuning pretrained models, offers a practical alternative; however, models pretrained on natural image datasets such as ImageNet may fail to capture domain-specific characteristics in medical imaging. This study introduces an unsupervised learning framework that extracts high-value dermatological features instead of relying solely on ImageNet-based pretraining. We employ a Variational Autoencoder (VAE) trained from scratch on a proprietary dermatological dataset, allowing the model to learn a structured and clinically relevant latent space. This self-supervised feature extractor is then compared to an ImageNet-pretrained backbone under identical classification conditions, highlighting the trade-offs between general-purpose and domain-specific pretraining. Our results reveal distinct learning patterns. The self-supervised model achieves a final validation loss of 0.110 (-33.33%), while the ImageNet-pretrained model stagnates at 0.100 (-16.67%), indicating overfitting. Accuracy trends confirm this: the self-supervised model improves from 45% to 65% (+44.44%) with a near-zero overfitting gap, whereas the ImageNet-pretrained model reaches 87% (+50.00%) but plateaus at 75% (+19.05%), with its overfitting gap increasing to +0.060. These findings suggest that while ImageNet pretraining accelerates convergence, it also amplifies overfitting on non-clinically relevant features. In contrast, self-supervised learning achieves steady improvements, stronger generalization, and superior adaptability, underscoring the importance of domain-specific feature extraction in medical imaging.