Abstract:Concepts such as objects, patterns, and shapes are how humans understand the world. Building on this intuition, concept-based explainability methods aim to study representations learned by deep neural networks in relation to human-understandable concepts. Here, Concept Activation Vectors (CAVs) are an important tool and can identify whether a model learned a concept or not. However, the computational cost and time requirements of existing CAV computation pose a significant challenge, particularly in large-scale, high-dimensional architectures. To address this limitation, we introduce FastCAV, a novel approach that accelerates the extraction of CAVs by up to 63.6x (on average 46.4x). We provide a theoretical foundation for our approach and give concrete assumptions under which it is equivalent to established SVM-based methods. Our empirical results demonstrate that CAVs calculated with FastCAV maintain similar performance while being more efficient and stable. In downstream applications, i.e., concept-based explanation methods, we show that FastCAV can act as a replacement leading to equivalent insights. Hence, our approach enables previously infeasible investigations of deep models, which we demonstrate by tracking the evolution of concepts during model training.
Abstract:Concept Activation Vectors (CAVs) offer insights into neural network decision-making by linking human friendly concepts to the model's internal feature extraction process. However, when a new set of CAVs is discovered, they must still be translated into a human understandable description. For image-based neural networks, this is typically done by visualizing the most relevant images of a CAV, while the determination of the concept is left to humans. In this work, we introduce an approach to aid the interpretation of newly discovered concept sets by suggesting textual descriptions for each CAV. This is done by mapping the most relevant images representing a CAV into a text-image embedding where a joint description of these relevant images can be computed. We propose utilizing the most relevant receptive fields instead of full images encoded. We demonstrate the capabilities of this approach in multiple experiments with and without given CAV labels, showing that the proposed approach provides accurate descriptions for the CAVs and reduces the challenge of concept interpretation.