Abstract:The rapid growth of Internet of Things (IoT) ecosystems has intensified the challenge of efficiently allocating heterogeneous resources in highly dynamic, distributed environments. Conventional centralized mechanisms and single-objective auction models, focusing solely on metrics such as cost minimization or revenue maximization, struggle to deliver balanced system performance. This paper proposes the Multi-Objective Hierarchical Auction Framework (MOHAF), a distributed resource allocation mechanism that jointly optimizes cost, Quality of Service (QoS), energy efficiency, and fairness. MOHAF integrates hierarchical clustering to reduce computational complexity with a greedy, submodular optimization strategy that guarantees a (1-1/e) approximation ratio. A dynamic pricing mechanism adapts in real time to resource utilization, enhancing market stability and allocation quality. Extensive experiments on the Google Cluster Data trace, comprising 3,553 requests and 888 resources, demonstrate MOHAF's superior allocation efficiency (0.263) compared to Greedy (0.185), First-Price (0.138), and Random (0.101) auctions, while achieving perfect fairness (Jain's index = 1.000). Ablation studies reveal the critical influence of cost and QoS components in sustaining balanced multi-objective outcomes. With near-linear scalability, theoretical guarantees, and robust empirical performance, MOHAF offers a practical and adaptable solution for large-scale IoT deployments, effectively reconciling efficiency, equity, and sustainability in distributed resource coordination.
Abstract:Multi-agent systems (MAS) are foundational in simulating complex real-world scenarios involving autonomous, interacting entities. However, traditional MAS architectures often suffer from rigid coordination mechanisms and difficulty adapting to dynamic tasks. We propose MetaOrch, a neural orchestration framework for optimal agent selection in multi-domain task environments. Our system implements a supervised learning approach that models task context, agent histories, and expected response quality to select the most appropriate agent for each task. A novel fuzzy evaluation module scores agent responses along completeness, relevance, and confidence dimensions, generating soft supervision labels for training the orchestrator. Unlike previous methods that hard-code agent-task mappings, MetaOrch dynamically predicts the most suitable agent while estimating selection confidence. Experiments in simulated environments with heterogeneous agents demonstrate that our approach achieves 86.3% selection accuracy, significantly outperforming baseline strategies including random selection and round-robin scheduling. The modular architecture emphasizes extensibility, allowing agents to be registered, updated, and queried independently. Results suggest that neural orchestration offers a powerful approach to enhancing the autonomy, interpretability, and adaptability of multi-agent systems across diverse task domains.