Get our free extension to see links to code for papers anywhere online!

 Add to Chrome

 Add to Firefox

CatalyzeX Code Finder - Browser extension linking code for ML papers across the web! | Product Hunt Embed
Faster Differentially Private Samplers via Rényi Divergence Analysis of Discretized Langevin MCMC

Oct 27, 2020
Arun Ganesh, Kunal Talwar

* To appear in NeurIPS 2020 

  Access Paper or Ask Questions

Stochastic Optimization with Laggard Data Pipelines

Oct 26, 2020
Naman Agarwal, Rohan Anil, Tomer Koren, Kunal Talwar, Cyril Zhang

* Published as a conference paper at NeurIPS 2020 

  Access Paper or Ask Questions

Stability of Stochastic Gradient Descent on Nonsmooth Convex Losses

Jun 12, 2020
Raef Bassily, Vitaly Feldman, Cristóbal Guzmán, Kunal Talwar

* 32 pages 

  Access Paper or Ask Questions

Private Stochastic Convex Optimization: Optimal Rates in Linear Time

May 10, 2020
Vitaly Feldman, Tomer Koren, Kunal Talwar


  Access Paper or Ask Questions

Exploring the Memorization-Generalization Continuum in Deep Learning

Feb 08, 2020
Ziheng Jiang, Chiyuan Zhang, Kunal Talwar, Michael C. Mozer


  Access Paper or Ask Questions

Computational Separations between Sampling and Optimization

Nov 05, 2019
Kunal Talwar

* NeurIPS 2019 

  Access Paper or Ask Questions

Rényi Differential Privacy of the Sampled Gaussian Mechanism

Aug 28, 2019
Ilya Mironov, Kunal Talwar, Li Zhang

* 14 pages 

  Access Paper or Ask Questions

Private Stochastic Convex Optimization with Optimal Rates

Aug 27, 2019
Raef Bassily, Vitaly Feldman, Kunal Talwar, Abhradeep Thakurta


  Access Paper or Ask Questions

Semi-Cyclic Stochastic Gradient Descent

Apr 23, 2019
Hubert Eichner, Tomer Koren, H. Brendan McMahan, Nathan Srebro, Kunal Talwar


  Access Paper or Ask Questions

Better Algorithms for Stochastic Bandits with Adversarial Corruptions

Mar 28, 2019
Anupam Gupta, Tomer Koren, Kunal Talwar


  Access Paper or Ask Questions

Amplification by Shuffling: From Local to Central Differential Privacy via Anonymity

Nov 29, 2018
Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, Abhradeep Thakurta


  Access Paper or Ask Questions

Private Selection from Private Candidates

Nov 19, 2018
Jingcheng Liu, Kunal Talwar

* 38 pages 

  Access Paper or Ask Questions

Privacy Amplification by Iteration

Aug 20, 2018
Vitaly Feldman, Ilya Mironov, Kunal Talwar, Abhradeep Thakurta

* Extended abstract appears in Foundations of Computer Science (FOCS) 2018 

  Access Paper or Ask Questions

Online Linear Quadratic Control

Jun 19, 2018
Alon Cohen, Avinatan Hassidim, Tomer Koren, Nevena Lazic, Yishay Mansour, Kunal Talwar


  Access Paper or Ask Questions

Online learning over a finite action set with limited switching

Jun 13, 2018
Jason Altschuler, Kunal Talwar

* Extended abstract to appear in the proceedings of the 2018 Conference on Learning Theory (COLT) 

  Access Paper or Ask Questions

Adversarially Robust Generalization Requires More Data

May 02, 2018
Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, Aleksander Mądry

* Small changes for biblatex compatibility 

  Access Paper or Ask Questions

Scalable Private Learning with PATE

Feb 24, 2018
Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, Úlfar Erlingsson

* Published as a conference paper at ICLR 2018 

  Access Paper or Ask Questions

Learning Differentially Private Recurrent Language Models

Feb 24, 2018
H. Brendan McMahan, Daniel Ramage, Kunal Talwar, Li Zhang

* Camera-ready ICLR 2018 version, minor edits from previous 

  Access Paper or Ask Questions

On the Protection of Private Information in Machine Learning Systems: Two Recent Approaches

Aug 26, 2017
Martín Abadi, Úlfar Erlingsson, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Nicolas Papernot, Kunal Talwar, Li Zhang

* IEEE 30th Computer Security Foundations Symposium (CSF), pages 1--6, 2017 

  Access Paper or Ask Questions

Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data

Mar 03, 2017
Nicolas Papernot, Martín Abadi, Úlfar Erlingsson, Ian Goodfellow, Kunal Talwar

* Accepted to ICLR 17 as an oral 

  Access Paper or Ask Questions

Private Empirical Risk Minimization Beyond the Worst Case: The Effect of the Constraint Set Geometry

Nov 20, 2016
Kunal Talwar, Abhradeep Thakurta, Li Zhang


  Access Paper or Ask Questions

Deep Learning with Differential Privacy

Oct 24, 2016
Martín Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar, Li Zhang


  Access Paper or Ask Questions

Sketching and Neural Networks

Apr 19, 2016
Amit Daniely, Nevena Lazic, Yoram Singer, Kunal Talwar


  Access Paper or Ask Questions

TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems

Mar 16, 2016
Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mane, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viegas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, Xiaoqiang Zheng

* Version 2 updates only the metadata, to correct the formatting of Mart\'in Abadi's name 

  Access Paper or Ask Questions