Abstract:The rapid expansion of the Internet of Things (IoT) is reshaping communication and operational practices across industries, but it also broadens the attack surface and increases susceptibility to security breaches. Artificial Intelligence has become a valuable solution in securing IoT networks, with Large Language Models (LLMs) enabling automated attack behavior analysis and mitigation suggestion in Network Intrusion Detection Systems (NIDS). Despite advancements, the use of LLMs in such systems further expands the attack surface, putting entire networks at risk by introducing vulnerabilities such as prompt injection and data poisoning. In this work, we attack an LLM-based IoT attack analysis and mitigation framework to test its adversarial robustness. We construct an attack description dataset and use it in a targeted data poisoning attack that applies word-level, meaning-preserving perturbations to corrupt the Retrieval-Augmented Generation (RAG) knowledge base of the framework. We then compare pre-attack and post-attack mitigation responses from the target model, ChatGPT-5 Thinking, to measure the impact of the attack on model performance, using an established evaluation rubric designed for human experts and judge LLMs. Our results show that small perturbations degrade LLM performance by weakening the linkage between observed network traffic features and attack behavior, and by reducing the specificity and practicality of recommended mitigations for resource-constrained devices.




Abstract:Undoubtedly, the evolution of Generative AI (GenAI) models has been the highlight of digital transformation in the year 2022. As the different GenAI models like ChatGPT and Google Bard continue to foster their complexity and capability, it's critical to understand its consequences from a cybersecurity perspective. Several instances recently have demonstrated the use of GenAI tools in both the defensive and offensive side of cybersecurity, and focusing on the social, ethical and privacy implications this technology possesses. This research paper highlights the limitations, challenges, potential risks, and opportunities of GenAI in the domain of cybersecurity and privacy. The work presents the vulnerabilities of ChatGPT, which can be exploited by malicious users to exfiltrate malicious information bypassing the ethical constraints on the model. This paper demonstrates successful example attacks like Jailbreaks, reverse psychology, and prompt injection attacks on the ChatGPT. The paper also investigates how cyber offenders can use the GenAI tools in developing cyber attacks, and explore the scenarios where ChatGPT can be used by adversaries to create social engineering attacks, phishing attacks, automated hacking, attack payload generation, malware creation, and polymorphic malware. This paper then examines defense techniques and uses GenAI tools to improve security measures, including cyber defense automation, reporting, threat intelligence, secure code generation and detection, attack identification, developing ethical guidelines, incidence response plans, and malware detection. We will also discuss the social, legal, and ethical implications of ChatGPT. In conclusion, the paper highlights open challenges and future directions to make this GenAI secure, safe, trustworthy, and ethical as the community understands its cybersecurity impacts.