Abstract:In recent machine learning systems, confidence scores are being utilized more and more to manage selective prediction, whereby a model can abstain from making a prediction when it is unconfident. Yet, conventional metrics like accuracy, expected calibration error (ECE), and area under the risk-coverage curve (AURC) do not capture the actual reliability of predictions. These metrics either disregard confidence entirely, dilute valuable localized information through averaging, or neglect to suitably penalize overconfident misclassifications, which can be particularly detrimental in real-world systems. We introduce two new metrics Confidence-Weighted Selective Accuracy (CWSA) and its normalized variant CWSA+ that offer a principled and interpretable way to evaluate predictive models under confidence thresholds. Unlike existing methods, our metrics explicitly reward confident accuracy and penalize overconfident mistakes. They are threshold-local, decomposable, and usable in both evaluation and deployment settings where trust and risk must be quantified. Through exhaustive experiments on both real-world data sets (MNIST, CIFAR-10) and artificial model variants (calibrated, overconfident, underconfident, random, perfect), we show that CWSA and CWSA+ both effectively detect nuanced failure modes and outperform classical metrics in trust-sensitive tests. Our results confirm that CWSA is a sound basis for developing and assessing selective prediction systems for safety-critical domains.
Abstract:This study formalizes a computational model to simulate classical Persian poets' dynamics of influence through constructing a multi-dimensional similarity network. Using a rigorously curated dataset based on Ganjoor's corpus, we draw upon semantic, lexical, stylistic, thematic, and metrical features to demarcate each poet's corpus. Each is contained within weighted similarity matrices, which are then appended to generate an aggregate graph showing poet-to-poet influence. Further network investigation is carried out to identify key poets, style hubs, and bridging poets by calculating degree, closeness, betweenness, eigenvector, and Katz centrality measures. Further, for typological insight, we use the Louvain community detection algorithm to demarcate clusters of poets sharing both style and theme coherence, which correspond closely to acknowledged schools of literature like Sabk-e Hindi, Sabk-e Khorasani, and the Bazgasht-e Adabi phenomenon. Our findings provide a new data-driven view of Persian literature distinguished between canonical significance and interextual influence, thus highlighting relatively lesser-known figures who hold great structural significance. Combining computational linguistics with literary study, this paper produces an interpretable and scalable model for poetic tradition, enabling retrospective reflection as well as forward-looking research within digital humanities.
Abstract:In personalized technology and psychological research, precisely detecting demographic features and personality traits from digital interactions becomes ever more important. This work investigates implicit categorization, inferring personality and gender variables directly from linguistic patterns in Telegram conversation data, while conventional personality prediction techniques mostly depend on explicitly self-reported labels. We refine a Transformer-based language model (RoBERTa) to capture complex linguistic cues indicative of personality traits and gender differences using a dataset comprising 138,866 messages from 1,602 users annotated with MBTI types and 195,016 messages from 2,598 users annotated with gender. Confidence levels help to greatly raise model accuracy to 86.16\%, hence proving RoBERTa's capacity to consistently identify implicit personality types from conversational text data. Our results highlight the usefulness of Transformer topologies for implicit personality and gender classification, hence stressing their efficiency and stressing important trade-offs between accuracy and coverage in realistic conversational environments. With regard to gender classification, the model obtained an accuracy of 74.4\%, therefore capturing gender-specific language patterns. Personality dimension analysis showed that people with introverted and intuitive preferences are especially more active in text-based interactions. This study emphasizes practical issues in balancing accuracy and data coverage as Transformer-based models show their efficiency in implicit personality and gender prediction tasks from conversational texts.


Abstract:This study aimed to propose a novel classifier based on K-Nearest Neighbors which calculates the local means of every class using the Power Muirhead Mean operator. We have called our new method Power Muirhead Mean K-Nearest Neighbors (PMM-KNN) classifier. The PMM-KNN classifier has several parameters which can be determined and fine-tuned for each problem that is countered as an advantage compared to other Nearest Neighbors methods. We used five well-known datasets to assess PMM-KNN performance. The research results demonstrate that the PMM-KNN has outperformed some of the other classification methods.