Abstract:Diffusion models can learn rich representations during data generation, showing potential for Self-Supervised Learning (SSL), but they face a trade-off between generative quality and discriminative performance. Their iterative sampling also incurs substantial computational and energy costs, hindering industrial and edge AI applications. To address these issues, we propose the Flow Matching-based Foundation Model (FlowFM), which jointly trains a representation encoder and a conditional flow matching generator. This decoupled design achieves both high-fidelity generation and effective recognition. By using flow matching to learn a simpler velocity field, FlowFM accelerates and stabilizes training, improving its efficiency for representation learning. Experiments on wearable sensor data show FlowFM reduces training time by 50.4\% compared to a diffusion-based approach. On downstream tasks, FlowFM surpassed the state-of-the-art SSL method (SSL-Wearables) on all five datasets while achieving up to a 51.0x inference speedup and maintaining high generative quality. The implementation code is available at https://github.com/Okita-Laboratory/jointOptimizationFlowMatching.
Abstract:In this paper, we propose a diffusion model that integrates a representation-conditioning mechanism, where the representations derived from a Vision Transformer (ViT) are used to condition the internal process of a Transformer-based diffusion model. This approach enables representation-conditioned data generation, addressing the challenge of requiring large-scale labeled datasets by leveraging self-supervised learning on unlabeled data. We evaluate our method through a zero-shot classification task for hematoma detection in brain imaging. Compared to the strong contrastive learning baseline, DINOv2, our method achieves a notable improvement of +6.15% in accuracy and +13.60% in F1-score, demonstrating its effectiveness in image classification.