Abstract:Chronoamperometry (CA) is a fundamental electrochemical technique used for quantifying redox-active species. However, in room-temperature ionic liquids (RTILs), the high viscosity and slow mass transport often lead to extended measurement durations. This paper presents a novel mathematical regression approach that reduces CA measurement windows to under 1 second, significantly faster than previously reported methods, which typically require 1-4 seconds or longer. By applying an inference algorithm to the initial transient current response, this method accurately predicts steady-state electrochemical parameters without requiring additional hardware modifications. The approach is validated through comparison with standard chronoamperometric techniques and is demonstrated to maintain reasonable accuracy while dramatically reducing data acquisition time. The implications of this technique are explored in analytical chemistry, sensor technology, and battery science, where rapid electrochemical quantification is critical. Our technique is focused on enabling faster multiplexing of chronoamperometric measurements for rapid olfactory and electrochemical analysis.
Abstract:Visual inertial odometry (VIO) is a process for fusing visual and kinematic data to understand a machine's state in a navigation task. Olfactory inertial odometry (OIO) is an analog to VIO that fuses signals from gas sensors with inertial data to help a robot navigate by scent. Gas dynamics and environmental factors introduce disturbances into olfactory navigation tasks that can make OIO difficult to facilitate. With our work here, we define a process for calibrating a robot for OIO that generalizes to several olfaction sensor types. Our focus is specifically on calibrating OIO for centimeter-level accuracy in localizing an odor source on a slow-moving robot platform to demonstrate use cases in robotic surgery and touchless security screening. We demonstrate our process for OIO calibration on a real robotic arm and show how this calibration improves performance over a cold-start olfactory navigation task.