Abstract:Mistake analysis in procedural activities is a critical area of research with applications spanning industrial automation, physical rehabilitation, education and human-robot collaboration. This paper reviews vision-based methods for detecting and predicting mistakes in structured tasks, focusing on procedural and executional errors. By leveraging advancements in computer vision, including action recognition, anticipation and activity understanding, vision-based systems can identify deviations in task execution, such as incorrect sequencing, use of improper techniques, or timing errors. We explore the challenges posed by intra-class variability, viewpoint differences and compositional activity structures, which complicate mistake detection. Additionally, we provide a comprehensive overview of existing datasets, evaluation metrics and state-of-the-art methods, categorizing approaches based on their use of procedural structure, supervision levels and learning strategies. Open challenges, such as distinguishing permissible variations from true mistakes and modeling error propagation are discussed alongside future directions, including neuro-symbolic reasoning and counterfactual state modeling. This work aims to establish a unified perspective on vision-based mistake analysis in procedural activities, highlighting its potential to enhance safety, efficiency and task performance across diverse domains.
Abstract:Anticipating object state changes in images and videos is a challenging problem whose solution has important implications in vision-based scene understanding, automated monitoring systems, and action planning. In this work, we propose the first method for solving this problem. The proposed method predicts object state changes that will occur in the near future as a result of yet unseen human actions. To address this new problem, we propose a novel framework that integrates learnt visual features that represent the recent visual information, with natural language (NLP) features that represent past object state changes and actions. Leveraging the extensive and challenging Ego4D dataset which provides a large-scale collection of first-person perspective videos across numerous interaction scenarios, we introduce new curated annotation data for the object state change anticipation task (OSCA), noted as Ego4D-OSCA. An extensive experimental evaluation was conducted that demonstrates the efficacy of the proposed method in predicting object state changes in dynamic scenarios. The proposed work underscores the potential of integrating video and linguistic cues to enhance the predictive performance of video understanding systems. Moreover, it lays the groundwork for future research on the new task of object state change anticipation. The source code and the new annotation data (Ego4D-OSCA) will be made publicly available.