Alert button
Picture for Konstantin Kleinheinz

Konstantin Kleinheinz

Alert button

Using Physics-Informed Super-Resolution Generative Adversarial Networks for Subgrid Modeling in Turbulent Reactive Flows

Add code
Bookmark button
Alert button
Nov 26, 2019
Mathis Bode, Michael Gauding, Zeyu Lian, Dominik Denker, Marco Davidovic, Konstantin Kleinheinz, Jenia Jitsev, Heinz Pitsch

Figure 1 for Using Physics-Informed Super-Resolution Generative Adversarial Networks for Subgrid Modeling in Turbulent Reactive Flows
Figure 2 for Using Physics-Informed Super-Resolution Generative Adversarial Networks for Subgrid Modeling in Turbulent Reactive Flows
Figure 3 for Using Physics-Informed Super-Resolution Generative Adversarial Networks for Subgrid Modeling in Turbulent Reactive Flows
Figure 4 for Using Physics-Informed Super-Resolution Generative Adversarial Networks for Subgrid Modeling in Turbulent Reactive Flows
Viaarxiv icon

Deep learning at scale for subgrid modeling in turbulent flows

Add code
Bookmark button
Alert button
Oct 01, 2019
Mathis Bode, Michael Gauding, Konstantin Kleinheinz, Heinz Pitsch

Figure 1 for Deep learning at scale for subgrid modeling in turbulent flows
Figure 2 for Deep learning at scale for subgrid modeling in turbulent flows
Figure 3 for Deep learning at scale for subgrid modeling in turbulent flows
Figure 4 for Deep learning at scale for subgrid modeling in turbulent flows
Viaarxiv icon