Abstract:Measurement data is often sampled irregularly i.e. not on equidistant time grids. This is also true for Hamiltonian systems. However, existing machine learning methods, which learn symplectic integrators, such as SympNets [20] and H\'enonNets [4] still require training data generated by fixed step sizes. To learn time-adaptive symplectic integrators, an extension to SympNets, which we call TSympNets, was introduced in [20]. We adapt the architecture of TSympNets and extend them to non-autonomous Hamiltonian systems. So far the approximation qualities of TSympNets were unknown. We close this gap by providing a universal approximation theorem for separable Hamiltonian systems and show that it is not possible to extend it to non-separable Hamiltonian systems. To investigate these theoretical approximation capabilities, we perform different numerical experiments. Furthermore we fix a mistake in a proof of a substantial theorem [25, Theorem 2] for the approximation of symplectic maps in general, but specifically for symplectic machine learning methods.
Abstract:We propose a new symplectic convolutional neural network (CNN) architecture by leveraging symplectic neural networks, proper symplectic decomposition, and tensor techniques. Specifically, we first introduce a mathematically equivalent form of the convolution layer and then, using symplectic neural networks, we demonstrate a way to parameterize the layers of the CNN to ensure that the convolution layer remains symplectic. To construct a complete autoencoder, we introduce a symplectic pooling layer. We demonstrate the performance of the proposed neural network on three examples: the wave equation, the nonlinear Schr\"odinger (NLS) equation, and the sine-Gordon equation. The numerical results indicate that the symplectic CNN outperforms the linear symplectic autoencoder obtained via proper symplectic decomposition.