Abstract:Pose-Guided Person Image Synthesis (PGPIS) generates realistic person images conditioned on a target pose and a source image. This task plays a key role in various real-world applications, such as sign language video generation, AR/VR, gaming, and live streaming. In these scenarios, real-time PGPIS is critical for providing immediate visual feedback and maintaining user immersion.However, achieving real-time performance remains a significant challenge due to the complexity of synthesizing high-fidelity images from diverse and dynamic human poses. Recent diffusion-based methods have shown impressive image quality in PGPIS, but their slow sampling speeds hinder deployment in time-sensitive applications. This latency is particularly problematic in tasks like generating sign language videos during live broadcasts, where rapid image updates are required. Therefore, developing a fast and reliable PGPIS model is a crucial step toward enabling real-time interactive systems. To address this challenge, we propose a generative model based on flow matching (FM). Our approach enables faster, more stable, and more efficient training and sampling. Furthermore, the proposed model supports conditional generation and can operate in latent space, making it especially suitable for real-time PGPIS applications where both speed and quality are critical. We evaluate our proposed method, Real-Time Person Image Synthesis Using a Flow Matching Model (RPFM), on the widely used DeepFashion dataset for PGPIS tasks. Our results show that RPFM achieves near-real-time sampling speeds while maintaining performance comparable to the state-of-the-art models. Our methodology trades off a slight, acceptable decrease in generated-image accuracy for over a twofold increase in generation speed, thereby ensuring real-time performance.
Abstract:Pose-Guided Person Image Synthesis (PGPIS) aims to synthesize high-quality person images corresponding to target poses while preserving the appearance of the source image. Recently, PGPIS methods that use diffusion models have achieved competitive performance. Most approaches involve extracting representations of the target pose and source image and learning their relationships in the generative model's training process. This approach makes it difficult to learn the semantic relationships between the input and target images and complicates the model structure needed to enhance generation results. To address these issues, we propose Fusion embedding for PGPIS using a Diffusion Model (FPDM). Inspired by the successful application of pre-trained CLIP models in text-to-image diffusion models, our method consists of two stages. The first stage involves training the fusion embedding of the source image and target pose to align with the target image's embedding. In the second stage, the generative model uses this fusion embedding as a condition to generate the target image. We applied the proposed method to the benchmark datasets DeepFashion and RWTH-PHOENIX-Weather 2014T, and conducted both quantitative and qualitative evaluations, demonstrating state-of-the-art (SOTA) performance. An ablation study of the model structure showed that even a model using only the second stage achieved performance close to the other PGPIS SOTA models. The code is available at https://github.com/dhlee-work/FPDM.