Abstract:Social media data is a valuable resource for research, yet it contains a wide range of non-standard words (NSW). These irregularities hinder the effective operation of NLP tools. Current state-of-the-art methods for the Vietnamese language address this issue as a problem of lexical normalization, involving the creation of manual rules or the implementation of multi-staged deep learning frameworks, which necessitate extensive efforts to craft intricate rules. In contrast, our approach is straightforward, employing solely a sequence-to-sequence (Seq2Seq) model. In this research, we provide a dataset for textual normalization, comprising 2,181 human-annotated comments with an inter-annotator agreement of 0.9014. By leveraging the Seq2Seq model for textual normalization, our results reveal that the accuracy achieved falls slightly short of 70%. Nevertheless, textual normalization enhances the accuracy of the Hate Speech Detection (HSD) task by approximately 2%, demonstrating its potential to improve the performance of complex NLP tasks. Our dataset is accessible for research purposes.
Abstract:English and Chinese, known as resource-rich languages, have witnessed the strong development of transformer-based language models for natural language processing tasks. Although Vietnam has approximately 100M people speaking Vietnamese, several pre-trained models, e.g., PhoBERT, ViBERT, and vELECTRA, performed well on general Vietnamese NLP tasks, including POS tagging and named entity recognition. These pre-trained language models are still limited to Vietnamese social media tasks. In this paper, we present the first monolingual pre-trained language model for Vietnamese social media texts, ViSoBERT, which is pre-trained on a large-scale corpus of high-quality and diverse Vietnamese social media texts using XLM-R architecture. Moreover, we explored our pre-trained model on five important natural language downstream tasks on Vietnamese social media texts: emotion recognition, hate speech detection, sentiment analysis, spam reviews detection, and hate speech spans detection. Our experiments demonstrate that ViSoBERT, with far fewer parameters, surpasses the previous state-of-the-art models on multiple Vietnamese social media tasks. Our ViSoBERT model is available only for research purposes.
Abstract:In recent years, Visual Question Answering (VQA) has gained significant attention for its diverse applications, including intelligent car assistance, aiding visually impaired individuals, and document image information retrieval using natural language queries. VQA requires effective integration of information from questions and images to generate accurate answers. Neural models for VQA have made remarkable progress on large-scale datasets, with a primary focus on resource-rich languages like English. To address this, we introduce the ViCLEVR dataset, a pioneering collection for evaluating various visual reasoning capabilities in Vietnamese while mitigating biases. The dataset comprises over 26,000 images and 30,000 question-answer pairs (QAs), each question annotated to specify the type of reasoning involved. Leveraging this dataset, we conduct a comprehensive analysis of contemporary visual reasoning systems, offering valuable insights into their strengths and limitations. Furthermore, we present PhoVIT, a comprehensive multimodal fusion that identifies objects in images based on questions. The architecture effectively employs transformers to enable simultaneous reasoning over textual and visual data, merging both modalities at an early model stage. The experimental findings demonstrate that our proposed model achieves state-of-the-art performance across four evaluation metrics. The accompanying code and dataset have been made publicly accessible at \url{https://github.com/kvt0012/ViCLEVR}. This provision seeks to stimulate advancements within the research community, fostering the development of more multimodal fusion algorithms, specifically tailored to address the nuances of low-resource languages, exemplified by Vietnamese.
Abstract:With the advancement of deep learning (DL) in various fields, there are many attempts to reveal software vulnerabilities by data-driven approach. Nonetheless, such existing works lack the effective representation that can retain the non-sequential semantic characteristics and contextual relationship of source code attributes. Hence, in this work, we propose XGV-BERT, a framework that combines the pre-trained CodeBERT model and Graph Neural Network (GCN) to detect software vulnerabilities. By jointly training the CodeBERT and GCN modules within XGV-BERT, the proposed model leverages the advantages of large-scale pre-training, harnessing vast raw data, and transfer learning by learning representations for training data through graph convolution. The research results demonstrate that the XGV-BERT method significantly improves vulnerability detection accuracy compared to two existing methods such as VulDeePecker and SySeVR. For the VulDeePecker dataset, XGV-BERT achieves an impressive F1-score of 97.5%, significantly outperforming VulDeePecker, which achieved an F1-score of 78.3%. Again, with the SySeVR dataset, XGV-BERT achieves an F1-score of 95.5%, surpassing the results of SySeVR with an F1-score of 83.5%.
Abstract:Social media processing is a fundamental task in natural language processing with numerous applications. As Vietnamese social media and information science have grown rapidly, the necessity of information-based mining on Vietnamese social media has become crucial. However, state-of-the-art research faces several significant drawbacks, including imbalanced data and noisy data on social media platforms. Imbalanced and noisy are two essential issues that need to be addressed in Vietnamese social media texts. Graph Convolutional Networks can address the problems of imbalanced and noisy data in text classification on social media by taking advantage of the graph structure of the data. This study presents a novel approach based on contextualized language model (PhoBERT) and graph-based method (Graph Convolutional Networks). In particular, the proposed approach, ViCGCN, jointly trained the power of Contextualized embeddings with the ability of Graph Convolutional Networks, GCN, to capture more syntactic and semantic dependencies to address those drawbacks. Extensive experiments on various Vietnamese benchmark datasets were conducted to verify our approach. The observation shows that applying GCN to BERTology models as the final layer significantly improves performance. Moreover, the experiments demonstrate that ViCGCN outperforms 13 powerful baseline models, including BERTology models, fusion BERTology and GCN models, other baselines, and SOTA on three benchmark social media datasets. Our proposed ViCGCN approach demonstrates a significant improvement of up to 6.21%, 4.61%, and 2.63% over the best Contextualized Language Models, including multilingual and monolingual, on three benchmark datasets, UIT-VSMEC, UIT-ViCTSD, and UIT-VSFC, respectively. Additionally, our integrated model ViCGCN achieves the best performance compared to other BERTology integrated with GCN models.
Abstract:Link prediction task is vital to automatically understanding the structure of large knowledge bases. In this paper, we present our system to solve this task at the Data Science and Advanced Analytics 2023 Competition "Efficient and Effective Link Prediction" (DSAA-2023 Competition) with a corpus containing 948,233 training and 238,265 for public testing. This paper introduces an approach to link prediction in Wikipedia articles by formulating it as a natural language inference (NLI) task. Drawing inspiration from recent advancements in natural language processing and understanding, we cast link prediction as an NLI task, wherein the presence of a link between two articles is treated as a premise, and the task is to determine whether this premise holds based on the information presented in the articles. We implemented our system based on the Sentence Pair Classification for Link Prediction for the Wikipedia Articles task. Our system achieved 0.99996 Macro F1-score and 1.00000 Macro F1-score for the public and private test sets, respectively. Our team UIT-NLP ranked 3rd in performance on the private test set, equal to the scores of the first and second places. Our code is publicly for research purposes.
Abstract:Visual Question Answering (VQA) is an intricate and demanding task that integrates natural language processing (NLP) and computer vision (CV), capturing the interest of researchers. The English language, renowned for its wealth of resources, has witnessed notable advancements in both datasets and models designed for VQA. However, there is a lack of models that target specific countries such as Vietnam. To address this limitation, we introduce a transformer-based Vietnamese model named BARTPhoBEiT. This model includes pre-trained Sequence-to-Sequence and bidirectional encoder representation from Image Transformers in Vietnamese and evaluates Vietnamese VQA datasets. Experimental results demonstrate that our proposed model outperforms the strong baseline and improves the state-of-the-art in six metrics: Accuracy, Precision, Recall, F1-score, WUPS 0.0, and WUPS 0.9.
Abstract:We present in this paper a novel scheme for multimodal learning named the Parallel Attention mechanism. In addition, to take into account the advantages of grammar and context in Vietnamese, we propose the Hierarchical Linguistic Features Extractor instead of using an LSTM network to extract linguistic features. Based on these two novel modules, we introduce the Parallel Attention Transformer (PAT), achieving the best accuracy compared to all baselines on the benchmark ViVQA dataset and other SOTA methods including SAAA and MCAN.
Abstract:In recent years, visual question answering (VQA) has attracted attention from the research community because of its highly potential applications (such as virtual assistance on intelligent cars, assistant devices for blind people, or information retrieval from document images using natural language as queries) and challenge. The VQA task requires methods that have the ability to fuse the information from questions and images to produce appropriate answers. Neural visual question answering models have achieved tremendous growth on large-scale datasets which are mostly for resource-rich languages such as English. However, available datasets narrow the VQA task as the answers selection task or answer classification task. We argue that this form of VQA is far from human ability and eliminates the challenge of the answering aspect in the VQA task by just selecting answers rather than generating them. In this paper, we introduce the OpenViVQA (Open-domain Vietnamese Visual Question Answering) dataset, the first large-scale dataset for VQA with open-ended answers in Vietnamese, consists of 11,000+ images associated with 37,000+ question-answer pairs (QAs). Moreover, we proposed FST, QuMLAG, and MLPAG which fuse information from images and answers, then use these fused features to construct answers as humans iteratively. Our proposed methods achieve results that are competitive with SOTA models such as SAAA, MCAN, LORA, and M4C. The dataset is available to encourage the research community to develop more generalized algorithms including transformers for low-resource languages such as Vietnamese.
Abstract:Machine reading comprehension has been an interesting and challenging task in recent years, with the purpose of extracting useful information from texts. To attain the computer ability to understand the reading text and answer relevant information, we introduce ViMMRC 2.0 - an extension of the previous ViMMRC for the task of multiple-choice reading comprehension in Vietnamese Textbooks which contain the reading articles for students from Grade 1 to Grade 12. This dataset has 699 reading passages which are prose and poems, and 5,273 questions. The questions in the new dataset are not fixed with four options as in the previous version. Moreover, the difficulty of questions is increased, which challenges the models to find the correct choice. The computer must understand the whole context of the reading passage, the question, and the content of each choice to extract the right answers. Hence, we propose the multi-stage approach that combines the multi-step attention network (MAN) with the natural language inference (NLI) task to enhance the performance of the reading comprehension model. Then, we compare the proposed methodology with the baseline BERTology models on the new dataset and the ViMMRC 1.0. Our multi-stage models achieved 58.81% by Accuracy on the test set, which is 5.34% better than the highest BERTology models. From the results of the error analysis, we found the challenge of the reading comprehension models is understanding the implicit context in texts and linking them together in order to find the correct answers. Finally, we hope our new dataset will motivate further research in enhancing the language understanding ability of computers in the Vietnamese language.