Abstract:Explainable artificial intelligence (XAI) enhances AI system transparency by framing interpretability as an optimization problem. However, this approach often necessitates numerous iterations of computationally intensive operations, limiting its applicability in real-time scenarios. While recent research has focused on XAI hardware acceleration on FPGAs and TPU, these methods do not fully address energy efficiency in real-time settings. To address this limitation, we propose XAIedge, a novel framework that leverages approximate computing techniques into XAI algorithms, including integrated gradients, model distillation, and Shapley analysis. XAIedge translates these algorithms into approximate matrix computations and exploits the synergy between convolution, Fourier transform, and approximate computing paradigms. This approach enables efficient hardware acceleration on TPU-based edge devices, facilitating faster real-time outcome interpretations. Our comprehensive evaluation demonstrates that XAIedge achieves a $2\times$ improvement in energy efficiency compared to existing accurate XAI hardware acceleration techniques while maintaining comparable accuracy. These results highlight the potential of XAIedge to significantly advance the deployment of explainable AI in energy-constrained real-time applications.
Abstract:The increasing adoption of approximate computing in deep neural network accelerators (AxDNNs) promises significant energy efficiency gains. However, permanent faults in AxDNNs can severely degrade their performance compared to their accurate counterparts (AccDNNs). Traditional fault detection and mitigation approaches, while effective for AccDNNs, introduce substantial overhead and latency, making them impractical for energy-constrained real-time deployment. To address this, we introduce EPSILON, a lightweight framework that leverages pre-computed statistical signatures and layer-wise importance metrics for efficient fault detection and mitigation in AxDNNs. Our framework introduces a novel non-parametric pattern-matching algorithm that enables constant-time fault detection without interrupting normal execution while dynamically adapting to different network architectures and fault patterns. EPSILON maintains model accuracy by intelligently adjusting mitigation strategies based on a statistical analysis of weight distribution and layer criticality while preserving the energy benefits of approximate computing. Extensive evaluations across various approximate multipliers, AxDNN architectures, popular datasets (MNIST, CIFAR-10, CIFAR-100, ImageNet-1k), and fault scenarios demonstrate that EPSILON maintains 80.05\% accuracy while offering 22\% improvement in inference time and 28\% improvement in energy efficiency, establishing EPSILON as a practical solution for deploying reliable AxDNNs in safety-critical edge applications.
Abstract:Approximate deep neural networks (AxDNNs) are promising for enhancing energy efficiency in real-world devices. One of the key contributors behind this enhanced energy efficiency in AxDNNs is the use of approximate multipliers. Unfortunately, the simulation of approximate multipliers does not usually scale well on CPUs and GPUs. As a consequence, this slows down the overall simulation of AxDNNs aimed at identifying the appropriate approximate multipliers to achieve high energy efficiency with a minimum accuracy loss. To address this problem, we present a novel XAI-Gen methodology, which leverages the analytical model of the emerging hardware accelerator (e.g., Google TPU v4) and explainable artificial intelligence (XAI) to precisely identify the non-critical layers for approximation and quickly discover the appropriate approximate multipliers for AxDNN layers. Our results show that XAI-Gen achieves up to 7x lower energy consumption with only 1-2% accuracy loss. We also showcase the effectiveness of the XAI-Gen approach through a neural architecture search (XAI-NAS) case study. Interestingly, XAI-NAS achieves 40\% higher energy efficiency with up to 5x less execution time when compared to the state-of-the-art NAS methods for generating AxDNNs.