Abstract:The transnational ivory trade continues to drive the decline of elephant populations across Africa, and trafficking networks remain difficult to disrupt. Tusks seized by law enforcement officials carry forensic information on the traffickers responsible for their export, including DNA evidence and handwritten markings made by traffickers. For 20 years, analyses of tusk DNA have identified where elephants were poached and established connections among shipments of ivory. While the links established using genetic evidence are extremely conclusive, genetic data is expensive and sometimes impossible to obtain. But though handwritten markings are easy to photograph, they are rarely documented or analyzed. Here, we present an AI-driven pipeline for extracting and analyzing handwritten markings on seized elephant tusks, offering a novel, scalable, and low-cost source of forensic evidence. Having collected 6,085 photographs from eight large seizures of ivory over a 6-year period (2014-2019), we used an object detection model to extract over 17,000 individual markings, which were then labeled and described using state-of-the-art AI tools. We identified 184 recurring "signature markings" that connect the tusks on which they appear. 20 signature markings were observed in multiple seizures, establishing forensic links between these seizures through traffickers involved in both shipments. This work complements other investigative techniques by filling in gaps where other data sources are unavailable. The study demonstrates the transformative potential of AI in wildlife forensics and highlights practical steps for integrating handwriting analysis into efforts to disrupt organized wildlife crime.
Abstract:Floods cause extensive global damage annually, making effective monitoring essential. While satellite observations have proven invaluable for flood detection and tracking, comprehensive global flood datasets spanning extended time periods remain scarce. In this study, we introduce a novel deep learning flood detection model that leverages the cloud-penetrating capabilities of Sentinel-1 Synthetic Aperture Radar (SAR) satellite imagery, enabling consistent flood extent mapping in any weather condition. By applying this model to nearly 10 years of SAR data, we create a unique, longitudinal global flood extent dataset with predictions unaffected by cloud coverage, offering comprehensive and consistent insights into historically flood-prone areas over the past decade. We use our model predictions to identify historically flood-prone areas in Ethiopia and demonstrate real-time disaster response capabilities during the May 2024 floods in Kenya. Additionally, our longitudinal analysis reveals potential increasing trends in global flood extent over time, although further validation is required to explore links to climate change. To maximize impact, we provide public access to both our model predictions and a code repository, empowering researchers and practitioners worldwide to advance flood monitoring and enhance disaster response strategies.