Abstract:Modeling complex dynamical systems under varying conditions is computationally intensive, often rendering high-fidelity simulations intractable. Although reduced-order models (ROMs) offer a promising solution, current methods often struggle with stochastic dynamics and fail to quantify prediction uncertainty, limiting their utility in robust decision-making contexts. To address these challenges, we introduce a data-driven framework for learning continuous-time stochastic ROMs that generalize across parameter spaces and forcing conditions. Our approach, based on amortized stochastic variational inference, leverages a reparametrization trick for Markov Gaussian processes to eliminate the need for computationally expensive forward solvers during training. This enables us to jointly learn a probabilistic autoencoder and stochastic differential equations governing the latent dynamics, at a computational cost that is independent of the dataset size and system stiffness. Additionally, our approach offers the flexibility of incorporating physics-informed priors if available. Numerical studies are presented for three challenging test problems, where we demonstrate excellent generalization to unseen parameter combinations and forcings, and significant efficiency gains compared to existing approaches.




Abstract:We consider the problem of inferring latent stochastic differential equations (SDEs) with a time and memory cost that scales independently with the amount of data, the total length of the time series, and the stiffness of the approximate differential equations. This is in stark contrast to typical methods for inferring latent differential equations which, despite their constant memory cost, have a time complexity that is heavily dependent on the stiffness of the approximate differential equation. We achieve this computational advancement by removing the need to solve differential equations when approximating gradients using a novel amortization strategy coupled with a recently derived reparametrization of expectations under linear SDEs. We show that, in practice, this allows us to achieve similar performance to methods based on adjoint sensitivities with more than an order of magnitude fewer evaluations of the model in training.