Indian Institute of Technology, Madras
Abstract:Text-to-speech (TTS) systems typically require high-quality studio data and accurate transcriptions for training. India has 1369 languages, with 22 official using 13 scripts. Training a TTS system for all these languages, most of which have no digital resources, seems a Herculean task. Our work focuses on zero-shot synthesis, particularly for languages whose scripts and phonotactics come from different families. The novelty of our work is in the augmentation of a shared phone representation and modifying the text parsing rules to match the phonotactics of the target language, thus reducing the synthesiser overhead and enabling rapid adaptation. Intelligible and natural speech was generated for Sanskrit, Maharashtrian and Canara Konkani, Maithili and Kurukh by leveraging linguistic connections across languages with suitable synthesisers. Evaluations confirm the effectiveness of this approach, highlighting its potential to expand speech technology access for under-represented languages.
Abstract:India has 1369 languages of which 22 are official. About 13 different scripts are used to represent these languages. A Common Label Set (CLS) was developed based on phonetics to address the issue of large vocabulary of units required in the End to End (E2E) framework for multilingual synthesis. This reduced the footprint of the synthesizer and also enabled fast adaptation to new languages which had similar phonotactics, provided language scripts belonged to the same family. In this paper, we provide new insights into speech synthesis, where the script belongs to one family, while the phonotactics comes from another. Indian language text is first converted to CLS, and then a synthesizer that matches the phonotactics of the language is used. Quality akin to that of a native speaker is obtained for Sanskrit and Konkani with zero adaptation data, using Kannada and Marathi synthesizers respectively. Further, this approach also lends itself seamless code switching across 13 Indian languages and English in a given native speaker's voice.