Abstract:Anion-conductive polymer membranes have attracted considerable attention as solid electrolytes for alkaline fuel cells and electrolysis cells. Their hydroxide ion conductivity varies depending on factors such as the type and distribution of quaternary ammonium groups, as well as the structure and connectivity of hydrophilic and hydrophobic domains. In particular, the size and connectivity of hydrophilic domains significantly influence the mobility of hydroxide ions; however, this relationship has remained largely qualitative. In this study, we calculated the number of key constituent elements in the hydrophilic and hydrophobic units based on the copolymer composition, and investigated their relationship with hydroxide ion conductivity by using Bayesian sparse modeling. As a result, we successfully identified composition-derived features that are critical for accurately predicting hydroxide ion conductivity.