Abstract:Probabilistic generative neural networks are useful for many applications, such as image classification, speech recognition and occlusion removal. However, the power budget for hardware implementations of neural networks can be extremely tight. To address this challenge we describe a design methodology for using approximate computing methods to implement Approximate Deep Belief Networks (ApproxDBNs) by systematically exploring the use of (1) limited precision of variables; (2) criticality analysis to identify the nodes in the network which can operate with such limited precision while allowing the network to maintain target accuracy levels; and (3) a greedy search methodology with incremental retraining to determine the optimal reduction in precision to enable maximize power savings under user-specified accuracy constraints. Experimental results show that significant bit-length reduction can be achieved by our ApproxDBN with constrained accuracy loss.
Abstract:Restricted Boltzmann Machines and Deep Belief Networks have been successfully used in a wide variety of applications including image classification and speech recognition. Inference and learning in these algorithms uses a Markov Chain Monte Carlo procedure called Gibbs sampling. A sigmoidal function forms the kernel of this sampler which can be realized from the firing statistics of noisy integrate-and-fire neurons on a neuromorphic VLSI substrate. This paper demonstrates such an implementation on an array of digital spiking neurons with stochastic leak and threshold properties for inference tasks and presents some key performance metrics for such a hardware-based sampler in both the generative and discriminative contexts.