Abstract:We propose a novel low-complexity three-dimensional (3D) localization algorithm for wireless sensor networks, termed quaternion-domain super multidimensional scaling (QD-SMDS). This algorithm reformulates the conventional SMDS, which was originally developed in the real domain, into the quaternion domain. By representing 3D coordinates as quaternions, the method enables the construction of a rank-1 Gram edge kernel (GEK) matrix that integrates both relative distance and angular (phase) information between nodes, maximizing the noise reduction effect achieved through low-rank truncation via singular value decomposition (SVD). The simulation results indicate that the proposed method demonstrates a notable enhancement in localization accuracy relative to the conventional SMDS algorithm, particularly in scenarios characterized by substantial measurement errors.