Abstract:To engineer AGI, we should first capture the essence of intelligence in a species-agnostic form that can be evaluated, while being sufficiently general to encompass diverse paradigms of intelligent behavior, including reinforcement learning, generative models, classification, analogical reasoning, and goal-directed decision-making. We propose a general criterion based on sample fidelity: intelligence is the ability, given sample(s) from a category, to generate sample(s) from the same category. We formalise this intuition as {\epsilon}-category intelligence: it is {\epsilon}-intelligent with respect to a category if no chosen admissible distinguisher can separate generated from original samples beyond tolerance {\epsilon}. We present the formal framework, outline empirical protocols, and discuss implications for evaluation, safety, and generalization.
Abstract:The success of large-scale language models like GPT can be attributed to their ability to efficiently predict the next token in a sequence. However, these models rely on constant computational effort regardless of the complexity of the token they are predicting, lacking the capacity for iterative refinement. In this paper, we introduce a novel Loop-Residual Neural Network, which achieves better performance by utilizing longer computational time without increasing the model size. Our approach revisits the input multiple times, refining the prediction by iteratively looping over a subset of the model with residual connections. We demonstrate the effectiveness of this method through experiments comparing versions of GPT-2 with our Loop-Residual models, showing improved performance in language modeling tasks while maintaining similar parameter counts. Importantly, these improvements are achieved without the need for extra training data.
Abstract:We present Self Meta Pseudo Labels, a novel semi-supervised learning method similar to Meta Pseudo Labels but without the teacher model. We introduce a novel way to use a single model for both generating pseudo labels and classification, allowing us to store only one model in memory instead of two. Our method attains similar performance to the Meta Pseudo Labels method while drastically reducing memory usage.