Abstract:As demand for intelligent services rises and edge devices become more capable, distributed learning at the network edge has emerged as a key enabling technology. While existing paradigms like federated learning (FL) and decentralized FL (DFL) enable privacy-preserving distributed learning in many scenarios, they face potential challenges in connectivity and synchronization imposed by resource-constrained and infrastructure-less environments. While more robust, gossip learning (GL) algorithms have generally been designed for homogeneous data distributions and may not suit all contexts. This paper introduces Chisme, a novel suite of protocols designed to address the challenges of implementing robust intelligence in the network edge, characterized by heterogeneous data distributions, episodic connectivity, and lack of infrastructure. Chisme includes both synchronous DFL (Chisme-DFL) and asynchronous GL (Chisme-GL) variants that enable collaborative yet decentralized model training that considers underlying data heterogeneity. We introduce a data similarity heuristic that allows agents to opportunistically infer affinity with each other using the existing communication of model updates in decentralized FL and GL. We leverage the heuristic to extend DFL's model aggregation and GL's model merge mechanisms for better personalized training while maintaining collaboration. While Chisme-DFL is a synchronous decentralized approach whose resource utilization scales linearly with network size, Chisme-GL is fully asynchronous and has a lower, constant resource requirement independent of network size. We demonstrate that Chisme methods outperform their standard counterparts in model training over distributed and heterogeneous data in network scenarios ranging from less connected and reliable networks to fully connected and lossless networks.
Abstract:The current state-of-the-art in user mobility research has extensively relied on open-source mobility traces captured from pedestrian and vehicular activity through a variety of communication technologies as users engage in a wide-range of applications, including connected healthcare, localization, social media, e-commerce, etc. Most of these traces are feature-rich and diverse, not only in the information they provide, but also in how they can be used and leveraged. This diversity poses two main challenges for researchers and practitioners who wish to make use of available mobility datasets. First, it is quite difficult to get a bird's eye view of the available traces without spending considerable time looking them up. Second, once they have found the traces, they still need to figure out whether the traces are adequate to their needs. The purpose of this survey is three-fold. It proposes a taxonomy to classify open-source mobility traces including their mobility mode, data source and collection technology. It then uses the proposed taxonomy to classify existing open-source mobility traces and finally, highlights three case studies using popular publicly available datasets to showcase how our taxonomy can tease out feature sets in traces to help determine their applicability to specific use-cases.