Abstract:We establish that testing for the equality of two probability measures on a general separable and compact metric space is equivalent to testing for the singularity between two corresponding Gaussian measures on a suitable Reproducing Kernel Hilbert Space. The corresponding Gaussians are defined via the notion of kernel mean and covariance embedding of a probability measure. Discerning two singular Gaussians is fundamentally simpler from an information-theoretic perspective than non-parametric two-sample testing, particularly in high-dimensional settings. Our proof leverages the Feldman-Hajek criterion for singularity/equivalence of Gaussians on Hilbert spaces, and shows that discrepancies between distributions are heavily magnified through their corresponding Gaussian embeddings: at a population level, distinct probability measures lead to essentially separated Gaussian embeddings. This appears to be a new instance of the blessing of dimensionality that can be harnessed for the design of efficient inference tools in great generality.