Abstract:This study introduces Query Attribute Modeling (QAM), a hybrid framework that enhances search precision and relevance by decomposing open text queries into structured metadata tags and semantic elements. QAM addresses traditional search limitations by automatically extracting metadata filters from free-form text queries, reducing noise and enabling focused retrieval of relevant items. Experimental evaluation using the Amazon Toys Reviews dataset (10,000 unique items with 40,000+ reviews and detailed product attributes) demonstrated QAM's superior performance, achieving a mean average precision at 5 (mAP@5) of 52.99\%. This represents significant improvement over conventional methods, including BM25 keyword search, encoder-based semantic similarity search, cross-encoder re-ranking, and hybrid search combining BM25 and semantic results via Reciprocal Rank Fusion (RRF). The results establish QAM as a robust solution for Enterprise Search applications, particularly in e-commerce systems.
Abstract:The substantial computational cost of high-fidelity models in numerical hemodynamics has, so far, relegated their use mainly to offline treatment planning. New breakthroughs in data-driven architectures and optimization techniques for fast surrogate modeling provide an exciting opportunity to overcome these limitations, enabling the use of such technology for time-critical decisions. We discuss an application to the repair of multiple stenosis in peripheral pulmonary artery disease through either transcatheter pulmonary artery rehabilitation or surgery, where it is of interest to achieve desired pressures and flows at specific locations in the pulmonary artery tree, while minimizing the risk for the patient. Since different degrees of success can be achieved in practice during treatment, we formulate the problem in probability, and solve it through a sample-based approach. We propose a new offline-online pipeline for probabilsitic real-time treatment planning which combines offline assimilation of boundary conditions, model reduction, and training dataset generation with online estimation of marginal probabilities, possibly conditioned on the degree of augmentation observed in already repaired lesions. Moreover, we propose a new approach for the parametrization of arbitrarily shaped vascular repairs through iterative corrections of a zero-dimensional approximant. We demonstrate this pipeline for a diseased model of the pulmonary artery tree available through the Vascular Model Repository.