Abstract:Two-class classification problems are often characterized by an imbalance between the number of majority and minority datapoints resulting in poor classification of the minority class in particular. Traditional approaches, such as reweighting the loss function or na\"ive resampling, risk overfitting and subsequently fail to improve classification because they do not consider the diversity between majority and minority datasets. Such consideration is infeasible because there is no metric that can measure the impact of imbalance on the model. To obviate these challenges, we make two key contributions. First, we introduce MOODS~(Multi-Objective Optimization for Data Sampling), a novel multi-objective bilevel optimization framework that guides both synthetic oversampling and majority undersampling. Second, we introduce a validation metric -- `$\epsilon/ \delta$ non-overlapping diversification metric' -- that quantifies the goodness of a sampling method towards model performance. With this metric we experimentally demonstrate state-of-the-art performance with improvement in diversity driving a $1-15 \%$ increase in $F1$ scores.
Abstract:Data rebalancing techniques, including oversampling and undersampling, are a common approach to addressing the challenges of imbalanced data. To tackle unresolved problems related to both oversampling and undersampling, we propose a new undersampling approach that: (i) avoids the pitfalls of noise and overlap caused by synthetic data and (ii) avoids the pitfall of under-fitting caused by random undersampling. Instead of undersampling majority data randomly, our method undersamples datapoints based on their ability to improve model loss. Using improved model loss as a proxy measurement for classification performance, our technique assesses a datapoint's impact on loss and rejects those unable to improve it. In so doing, our approach rejects majority datapoints redundant to datapoints already accepted and, thereby, finds an optimal subset of majority training data for classification. The accept/reject component of our algorithm is motivated by a bilevel optimization problem uniquely formulated to identify the optimal training set we seek. Experimental results show our proposed technique with F1 scores up to 10% higher than state-of-the-art methods.