Abstract:Large Language Models (LLMs) frequently produce factoid hallucinations - plausible yet incorrect answers. A common mitigation strategy is model alignment, which improves factual accuracy by training on curated factual and non-factual pairs. However, this approach often relies on a stronger model (e.g., GPT-4) or an external knowledge base to assess factual correctness, which may not always be accessible. To address this, we propose Atomic Consistency Preference Optimization (ACPO), a self-supervised preference-tuning method that enhances factual accuracy without external supervision. ACPO leverages atomic consistency signals, i.e., the agreement of individual facts across multiple stochastic responses, to identify high- and low-quality data pairs for model alignment. By eliminating the need for costly GPT calls, ACPO provides a scalable and efficient approach to improving factoid question-answering. Despite being self-supervised, empirical results demonstrate that ACPO outperforms FactAlign, a strong supervised alignment baseline, by 1.95 points on the LongFact and BioGen datasets, highlighting its effectiveness in enhancing factual reliability without relying on external models or knowledge bases.
Abstract:Flight trajectory prediction is a critical time series task in aviation. While deep learning methods have shown significant promise, the application of large language models (LLMs) to this domain remains underexplored. This study pioneers the use of LLMs for flight trajectory prediction by reframing it as a language modeling problem. Specifically, We extract features representing the aircraft's position and status from ADS-B flight data to construct a prompt-based dataset, where trajectory waypoints are converted into language tokens. The dataset is then employed to fine-tune LLMs, enabling them to learn complex spatiotemporal patterns for accurate predictions. Comprehensive experiments demonstrate that LLMs achieve notable performance improvements in both single-step and multi-step predictions compared to traditional methods, with LLaMA-3.1 model achieving the highest overall accuracy. However, the high inference latency of LLMs poses a challenge for real-time applications, underscoring the need for further research in this promising direction.