Abstract:We introduce a novel unsupervised learning method for time series data with latent dynamical structure: the recognition-parametrized Gaussian state space model (RP-GSSM). The RP-GSSM is a probabilistic model that learns Markovian Gaussian latents explaining statistical dependence between observations at different time steps, combining the intuition of contrastive methods with the flexible tools of probabilistic generative models. Unlike contrastive approaches, the RP-GSSM is a valid probabilistic model learned via maximum likelihood. Unlike generative approaches, the RP-GSSM has no need for an explicit network mapping from latents to observations, allowing it to focus model capacity on inference of latents. The model is both tractable and expressive: it admits exact inference thanks to its jointly Gaussian latent prior, while maintaining expressivity with an arbitrarily nonlinear neural network link between observations and latents. These qualities allow the RP-GSSM to learn task-relevant latents without ad-hoc regularization, auxiliary losses, or optimizer scheduling. We show how this approach outperforms alternatives on problems that include learning nonlinear stochastic dynamics from video, with or without background distractors. Our results position the RP-GSSM as a useful foundation model for a variety of downstream applications.
Abstract:Linear recurrent models, such as State Space Models (SSMs) and Linear Recurrent Units (LRUs), have recently shown state-of-the-art performance on long sequence modelling benchmarks. Despite their success, they come with a number of drawbacks, most notably their complex initialisation and normalisation schemes. In this work, we address some of these issues by proposing RotRNN -- a linear recurrent model which utilises the convenient properties of rotation matrices. We show that RotRNN provides a simple model with fewer theoretical assumptions than prior works, with a practical implementation that remains faithful to its theoretical derivation, achieving comparable scores to the LRU and SSMs on several long sequence modelling datasets.