Abstract:The compression of satellite imagery remains an important research area as hundreds of terabytes of images are collected every day, which drives up storage and bandwidth costs. Although progress has been made in increasing the resolution of these satellite images, many downstream tasks are only interested in small regions of any given image. These areas of interest vary by task but, once known, can be used to optimize how information within the image is encoded. Whereas standard image encoding methods, even those optimized for remote sensing, work on the whole image equally, there are emerging methods that can be guided by saliency maps to focus on important areas. In this work we show how imagery preprocessing techniques driven by saliency maps can be used with traditional lossy compression coding standards to create variable rate image compression within a single large satellite image. Specifically, we use variable sized smoothing kernels that map to different quantized saliency levels to process imagery pixels in order to optimize downstream compression and encoding schemes.
Abstract:Cell phone coverage and high-speed service gaps persist in rural areas in sub-Saharan Africa, impacting public access to mobile-based financial, educational, and humanitarian services. Improving maps of telecommunications infrastructure can help inform strategies to eliminate gaps in mobile coverage. Deep neural networks, paired with remote sensing images, can be used for object detection of cell towers and eliminate the need for inefficient and burdensome manual mapping to find objects over large geographic regions. In this study, we demonstrate a partially automated workflow to train an object detection model to locate cell towers using OpenStreetMap (OSM) features and high-resolution Maxar imagery. For model fine-tuning and evaluation, we curated a diverse dataset of over 6,000 unique images of cell towers in 26 countries in eastern, southern, and central Africa using automatically generated annotations from OSM points. Our model achieves an average precision at 50% Intersection over Union (IoU) (AP@50) of 81.2 with good performance across different geographies and out-of-sample testing. Accurate localization of cell towers can yield more accurate cell coverage maps, in turn enabling improved delivery of digital services for decision-support applications.