Abstract:Large language model (LLM) agents currently depend on predefined tools or brittle tool generation, constraining their capability and adaptability to complex scientific tasks. We introduce CASCADE, a self-evolving agentic framework representing an early instantiation of the transition from "LLM + tool use" to "LLM + skill acquisition". CASCADE enables agents to master complex external tools and codify knowledge through two meta-skills: continuous learning via web search and code extraction, and self-reflection via introspection and knowledge graph exploration, among others. We evaluate CASCADE on SciSkillBench, a benchmark of 116 materials science and chemistry research tasks. CASCADE achieves a 93.3% success rate using GPT-5, compared to 35.4% without evolution mechanisms. We further demonstrate real-world applications in computational analysis, autonomous laboratory experiments, and selective reproduction of published papers. Along with human-agent collaboration and memory consolidation, CASCADE accumulates executable skills that can be shared across agents and scientists, moving toward scalable AI-assisted scientific research.
Abstract:Graph neural networks (GNNs) have demonstrated promising performance across various chemistry-related tasks. However, conventional graphs only model the pairwise connectivity in molecules, failing to adequately represent higher-order connections like multi-center bonds and conjugated structures. To tackle this challenge, we introduce molecular hypergraphs and propose Molecular Hypergraph Neural Networks (MHNN) to predict the optoelectronic properties of organic semiconductors, where hyperedges represent conjugated structures. A general algorithm is designed for irregular high-order connections, which can efficiently operate on molecular hypergraphs with hyperedges of various orders. The results show that MHNN outperforms all baseline models on most tasks of OPV, OCELOTv1 and PCQM4Mv2 datasets. Notably, MHNN achieves this without any 3D geometric information, surpassing the baseline model that utilizes atom positions. Moreover, MHNN achieves better performance than pretrained GNNs under limited training data, underscoring its excellent data efficiency. This work provides a new strategy for more general molecular representations and property prediction tasks related to high-order connections.