Abstract:Arbitrary-scale image super-resolution aims to upsample images to any desired resolution, offering greater flexibility than traditional fixed-scale super-resolution. Recent approaches in this domain utilize regression-based or generative models, but many of them are a single-stage upsampling process, which may be challenging to learn across a wide, continuous distribution of scaling factors. Progressive upsampling strategies have shown promise in mitigating this issue, yet their integration with diffusion models for flexible upscaling remains underexplored. Here, we present CasArbi, a novel self-cascaded diffusion framework for arbitrary-scale image super-resolution. CasArbi meets the varying scaling demands by breaking them down into smaller sequential factors and progressively enhancing the image resolution at each step with seamless transitions for arbitrary scales. Our novel coordinate-guided residual diffusion model allows for the learning of continuous image representations while enabling efficient diffusion sampling. Extensive experiments demonstrate that our CasArbi outperforms prior arts in both perceptual and distortion performance metrics across diverse arbitrary-scale super-resolution benchmarks.
Abstract:Text-to-Image (T2I) models often suffer from text-image misalignment in complex scenes involving multiple objects and attributes. Semantic binding aims to mitigate this issue by accurately associating the generated attributes and objects with their corresponding noun phrases (NPs). Existing methods rely on text or latent optimizations, yet the factors influencing semantic binding remain underexplored. Here we investigate the geometrical properties of text token embeddings and their cross-attention (CA) maps. We empirically and theoretically analyze that the geometrical properties of token embeddings, specifically both angular distances and norms, play a crucial role in CA map differentiation. Then, we propose \textbf{TeeMo}, a training-free text embedding-aware T2I framework with strong semantic binding. TeeMo consists of Causality-Aware Projection-Out (CAPO) for distinct inter-NP CA maps and Adaptive Token Mixing (ATM) with our loss to enhance inter-NP separation while maintaining intra-NP cohesion in CA maps. Extensive experiments confirm TeeMo consistently outperforms prior arts across diverse baselines and datasets.