Abstract:In this work, we address the challenge of affordance detection in 3D point clouds, a task that requires effectively capturing fine-grained alignments between point clouds and text. Existing methods often struggle to model such alignments, resulting in limited performance on standard benchmarks. A key limitation of these approaches is their reliance on simple cosine similarity between point cloud and text embeddings, which lacks the expressiveness needed for fine-grained reasoning. To address this limitation, we propose LM-AD, a novel method for affordance detection in 3D point clouds. Moreover, we introduce the Affordance Query Module (AQM), which efficiently captures fine-grained alignment between point clouds and text by leveraging a pretrained language model. We demonstrated that our method outperformed existing approaches in terms of accuracy and mean Intersection over Union on the 3D AffordanceNet dataset.