Abstract:Offline Reinforcement Learning (RL) enables policy optimization from static datasets but is inherently vulnerable to backdoor attacks. Existing attack strategies typically struggle against safety-constrained algorithms (e.g., CQL) due to inefficient random poisoning and the use of easily detectable Out-of-Distribution (OOD) triggers. In this paper, we propose CS-GBA (Critical Sample-based Gradient-guided Backdoor Attack), a novel framework designed to achieve high stealthiness and destructiveness under a strict budget. Leveraging the theoretical insight that samples with high Temporal Difference (TD) errors are pivotal for value function convergence, we introduce an adaptive Critical Sample Selection strategy that concentrates the attack budget on the most influential transitions. To evade OOD detection, we propose a Correlation-Breaking Trigger mechanism that exploits the physical mutual exclusivity of state features (e.g., 95th percentile boundaries) to remain statistically concealed. Furthermore, we replace the conventional label inversion with a Gradient-Guided Action Generation mechanism, which searches for worst-case actions within the data manifold using the victim Q-network's gradient. Empirical results on D4RL benchmarks demonstrate that our method significantly outperforms state-of-the-art baselines, achieving high attack success rates against representative safety-constrained algorithms with a minimal 5% poisoning budget, while maintaining the agent's performance in clean environments.
Abstract:Offline Reinforcement Learning (RL) enables policy optimization from static datasets but is inherently vulnerable to data poisoning attacks. Existing attack strategies typically rely on locally uniform perturbations, which treat all samples indiscriminately. This approach is inefficient, as it wastes the perturbation budget on low-impact samples, and lacks stealthiness due to significant statistical deviations. In this paper, we propose a novel Global Budget Allocation attack strategy. Leveraging the theoretical insight that a sample's influence on value function convergence is proportional to its Temporal Difference (TD) error, we formulate the attack as a global resource allocation problem. We derive a closed-form solution where perturbation magnitudes are assigned proportional to the TD-error sensitivity under a global L2 constraint. Empirical results on D4RL benchmarks demonstrate that our method significantly outperforms baseline strategies, achieving up to 80% performance degradation with minimal perturbations that evade detection by state-of-the-art statistical and spectral defenses.