Abstract:Direct Preference Optimization (DPO) is a simple and efficient framework that has attracted substantial attention. However, it often struggles to meet its primary objectives -- increasing the generation probability of chosen responses while reducing that of rejected responses -- due to the dominant influence of rejected responses on the loss function. This imbalance leads to suboptimal performance in promoting preferred responses. In this work, we systematically analyze the limitations of DPO and existing algorithms designed to achieve the objectives stated above. To address these limitations, we propose Bounded-DPO (BDPO), a novel method that bounds the influence of rejected responses while maintaining the original optimization structure of DPO. Through theoretical analysis and empirical evaluations, we demonstrate that BDPO achieves a balanced optimization of the chosen and rejected responses, outperforming existing algorithms.
Abstract:Diffusion models have recently gained prominence in offline reinforcement learning due to their ability to effectively learn high-performing, generalizable policies from static datasets. Diffusion-based planners facilitate long-horizon decision-making by generating high-quality trajectories through iterative denoising, guided by return-maximizing objectives. However, existing guided sampling strategies such as Classifier Guidance, Classifier-Free Guidance, and Monte Carlo Sample Selection either produce suboptimal multi-modal actions, struggle with distributional drift, or incur prohibitive inference-time costs. To address these challenges, we propose Prior Guidance (PG), a novel guided sampling framework that replaces the standard Gaussian prior of a behavior-cloned diffusion model with a learnable distribution, optimized via a behavior-regularized objective. PG directly generates high-value trajectories without costly reward optimization of the diffusion model itself, and eliminates the need to sample multiple candidates at inference for sample selection. We present an efficient training strategy that applies behavior regularization in latent space, and empirically demonstrate that PG outperforms state-of-the-art diffusion policies and planners across diverse long-horizon offline RL benchmarks.