Abstract:Data-enabled Predictive Control (DeePC) is a powerful data-driven approach for predictive control without requiring an explicit system model. However, its high computational cost limits its applicability to real-time robotic systems. For robotic applications such as motion planning and trajectory tracking, real-time control is crucial. Nonlinear DeePC either relies on large datasets or learning the nonlinearities to ensure predictive accuracy, leading to high computational complexity. This work introduces contextual sampling, a novel data selection strategy to handle nonlinearities for DeePC by dynamically selecting the most relevant data at each time step. By reducing the dataset size while preserving prediction accuracy, our method improves computational efficiency, of DeePC for real-time robotic applications. We validate our approach for autonomous vehicle motion planning. For a dataset size of 100 sub-trajectories, Contextual sampling DeePC reduces tracking error by 53.2 % compared to Leverage Score sampling. Additionally, Contextual sampling reduces max computation time by 87.2 % compared to using the full dataset of 491 sub-trajectories while achieving comparable tracking performance. These results highlight the potential of Contextual sampling to enable real-time, data-driven control for robotic systems.
Abstract:Distributed control algorithms are known to reduce overall computation time compared to centralized control algorithms. However, they can result in inconsistent solutions leading to the violation of safety-critical constraints. Inconsistent solutions can arise when two or more agents compute concurrently while making predictions on each others control actions. To address this issue, we propose an iterative algorithm called Synchronization-Based Cooperative Distributed Model Predictive Control, which we presented in [1]. The algorithm consists of two steps: 1. computing the optimal control inputs for each agent and 2. synchronizing the predicted states across all agents. We demonstrate the efficacy of our algorithm in the control of multiple small-scale vehicles in our Cyber-Physical Mobility Lab.