Abstract:In Multi-Criteria Decision Analysis, Rank Reversals are a serious problem that can greatly affect the results of a Multi-Criteria Decision Method against a particular set of alternatives. It is therefore useful to have a mechanism that allows one to measure the performance of a method on a set of alternatives. This idea could be taken further to build a global ranking of the effectiveness of different methods to solve a problem. In this paper, we present three tests that detect the presence of Rank Reversals, along with their implementation in the Scikit-Criteria library. We also address the complications that arise when implementing these tests for general scenarios and the design considerations we made to handle them. We close with a discussion about how these additions could play a major role in the judgment of multi-criteria decision methods for problem solving.
Abstract:In this paper we present the development of a dataset consisting of 91 Multi-band Cloud and Moisture Product Full-Disk (MCMIPF) from the Advanced Baseline Imager (ABI) on board GOES-16 geostationary satellite with 91 temporally and spatially corresponding CLDCLASS products from the CloudSat polar satellite. The products are diurnal, corresponding to the months of January and February 2019 and were chosen such that the products from both satellites can be co-located over South America. The CLDCLASS product provides the cloud type observed for each of the orbit's steps and the GOES-16 multiband images contain pixels that can be co-located with these data. We develop an algorithm that returns a product in the form of a table that provides pixels from multiband images labelled with the type of cloud observed in them. These labelled data conformed in this particular structure are very useful to perform supervised learning. This was corroborated by training a simple linear artificial neural network based on the work of Gorooh et al. (2020), which gave good results, especially for the classification of deep convective clouds.