Abstract:Recent work in online speech spectrogram inversion effectively combines Deep Learning with the Gradient Theorem to predict phase derivatives directly from magnitudes. Then, phases are estimated from their derivatives via least squares, resulting in a high quality reconstruction. In this work, we introduce three innovations that drastically reduce computational cost, while maintaining high quality: Firstly, we introduce a novel neural network architecture with just 8k parameters, 30 times smaller than previous state of the art. Secondly, increasing latency by 1 hop size allows us to further halve the cost of the neural inference step. Thirdly, we we observe that the least squares problem features a tridiagonal matrix and propose a linear-complexity solver for the least squares step that leverages tridiagonality and positive-semidefiniteness, achieving a speedup of several orders of magnitude. We release samples online.
Abstract:This study presents a deep-learning framework for controlling multichannel acoustic feedback in audio devices. Traditional digital signal processing methods struggle with convergence when dealing with highly correlated noise such as feedback. We introduce a Convolutional Recurrent Network that efficiently combines spatial and temporal processing, significantly enhancing speech enhancement capabilities with lower computational demands. Our approach utilizes three training methods: In-a-Loop Training, Teacher Forcing, and a Hybrid strategy with a Multichannel Wiener Filter, optimizing performance in complex acoustic environments. This scalable framework offers a robust solution for real-world applications, making significant advances in Acoustic Feedback Control technology.
Abstract:We introduce a novel all neural model for low-latency directional speech extraction. The model uses direction of arrival (DOA) embeddings from a predefined spatial grid, which are transformed and fused into a recurrent neural network based speech extraction model. This process enables the model to effectively extract speech from a specified DOA. Unlike previous methods that relied on hand-crafted directional features, the proposed model trains DOA embeddings from scratch using speech enhancement loss, making it suitable for low-latency scenarios. Additionally, it operates at a high frame rate, taking in DOA with each input frame, which brings in the capability of quickly adapting to changing scene in highly dynamic real-world scenarios. We provide extensive evaluation to demonstrate the model's efficacy in directional speech extraction, robustness to DOA mismatch, and its capability to quickly adapt to abrupt changes in DOA.