Abstract:This paper presents a state representation framework for Markov decision processes (MDPs) that can be learned solely from state trajectories, requiring neither reward signals nor the actions executed by the agent. We propose learning the minimum action distance (MAD), defined as the minimum number of actions required to transition between states, as a fundamental metric that captures the underlying structure of an environment. MAD naturally enables critical downstream tasks such as goal-conditioned reinforcement learning and reward shaping by providing a dense, geometrically meaningful measure of progress. Our self-supervised learning approach constructs an embedding space where the distances between embedded state pairs correspond to their MAD, accommodating both symmetric and asymmetric approximations. We evaluate the framework on a comprehensive suite of environments with known MAD values, encompassing both deterministic and stochastic dynamics, as well as discrete and continuous state spaces, and environments with noisy observations. Empirical results demonstrate that the proposed approach not only efficiently learns accurate MAD representations across these diverse settings but also significantly outperforms existing state representation methods in terms of representation quality.
Abstract:What is a useful skill hierarchy for an autonomous agent? We propose an answer based on the graphical structure of an agent's interaction with its environment. Our approach uses hierarchical graph partitioning to expose the structure of the graph at varying timescales, producing a skill hierarchy with multiple levels of abstraction. At each level of the hierarchy, skills move the agent between regions of the state space that are well connected within themselves but weakly connected to each other. We illustrate the utility of the proposed skill hierarchy in a wide variety of domains in the context of reinforcement learning.