Abstract:Space weather at Earth, driven by the solar activity, poses growing risks to satellites around our planet as well as to critical ground-based technological infrastructure. Major space weather contributors are the solar wind and coronal mass ejections whose variable density, speed, temperature, and magnetic field make the automated classification of those structures challenging. In this work, we adapt a foundation model for solar physics, originally trained on Solar Dynamics Observatory imagery, to create embeddings suitable for solar wind structure analysis. These embeddings are concatenated with the spacecraft position and solar magnetic connectivity encoded using Fourier features which generates a neural field-based model. The full deep learning architecture is fine-tuned bridging the gap between remote sensing and in situ observations. Labels are derived from Parker Solar Probe measurements, forming a downstream classification task that maps plasma properties to solar wind structures. Although overall classification performance is modest, likely due to coarse labeling, class imbalance, and limited transferability of the pretrained model, this study demonstrates the feasibility of leveraging foundation model embeddings for in situ solar wind tasks. As a first proof-of-concept, it lays the groundwork for future improvements toward more reliable space weather predictions. The code and configuration files used in this study are publicly available to support reproducibility.
Abstract:Accurate estimation of sea ice drift is critical for Arctic navigation, climate research, and operational forecasting. While optical flow, a computer vision technique for estimating pixel wise motion between consecutive images, has advanced rapidly in computer vision, its applicability to geophysical problems and to satellite SAR imagery remains underexplored. Classical optical flow methods rely on mathematical models and strong assumptions about motion, which limit their accuracy in complex scenarios. Recent deep learning based approaches have substantially improved performance and are now the standard in computer vision, motivating their application to sea ice drift estimation. We present the first large scale benchmark of 48 deep learning optical flow models on RADARSAT 2 ScanSAR sea ice imagery, evaluated with endpoint error (EPE) and Fl all metrics against GNSS tracked buoys. Several models achieve sub kilometer accuracy (EPE 6 to 8 pixels, 300 to 400 m), a small error relative to the spatial scales of sea ice motion and typical navigation requirements in the Arctic. Our results demonstrate that the models are capable of capturing consistent regional drift patterns and that recent deep learning based optical flow methods, which have substantially improved motion estimation accuracy compared to classical methods, can be effectively transferred to polar remote sensing. Optical flow produces spatially continuous drift fields, providing motion estimates for every image pixel rather than at sparse buoy locations, offering new opportunities for navigation and climate modeling.