Abstract:Cellular automata are capable of developing complex behaviors based on simple local interactions between their elements. Some of these characteristics have been used to propose and improve meta-heuristics for global optimization; however, the properties offered by the evolution rules in cellular automata have not yet been used directly in optimization tasks. Inspired by the complexity that various evolution rules of cellular automata can offer, the continuous-state cellular automata algorithm (CCAA) is proposed. In this way, the CCAA takes advantage of different evolution rules to maintain a balance that maximizes the exploration and exploitation properties in each iteration. The efficiency of the CCAA is proven with 33 test problems widely used in the literature, 4 engineering applications that were also used in recent literature, and the design of adaptive infinite-impulse response (IIR) filters, testing 10 full-order IIR reference functions. The numerical results prove its competitiveness in comparison with state-of-the-art algorithms. The source codes of the CCAA are publicly available at https://github.com/juanseck/CCAA.git
Abstract:The Flexible Job Shop Scheduling Problem (FJSP) is a combinatorial problem that continues to be studied extensively due to its practical implications in manufacturing systems and emerging new variants, in order to model and optimize more complex situations that reflect the current needs of the industry better. This work presents a new meta-heuristic algorithm called GLNSA (Global-local neighborhood search algorithm), in which the neighborhood concepts of a cellular automaton are used, so that a set of leading solutions called "smart_cells" generates and shares information that helps to optimize instances of FJSP. The GLNSA algorithm is complemented with a tabu search that implements a simplified version of the Nopt1 neighborhood defined in [1] to complement the optimization task. The experiments carried out show a satisfactory performance of the proposed algorithm, compared with other results published in recent algorithms and widely cited in the specialized bibliography, using 86 test problems, improving the optimal result reported in previous works in two of them.