Abstract:Patient stratification identifying clinically meaningful subgroups is essential for advancing personalized medicine through improved diagnostics and treatment strategies. Electronic health records (EHRs), particularly those from intensive care units (ICUs), contain rich temporal clinical data that can be leveraged for this purpose. In this work, we introduce ICU-TSB (Temporal Stratification Benchmark), the first comprehensive benchmark for evaluating patient stratification based on temporal patient representation learning using three publicly available ICU EHR datasets. A key contribution of our benchmark is a novel hierarchical evaluation framework utilizing disease taxonomies to measure the alignment of discovered clusters with clinically validated disease groupings. In our experiments with ICU-TSB, we compared statistical methods and several recurrent neural networks, including LSTM and GRU, for their ability to generate effective patient representations for subsequent clustering of patient trajectories. Our results demonstrate that temporal representation learning can rediscover clinically meaningful patient cohorts; nevertheless, it remains a challenging task, with v-measuring varying from up to 0.46 at the top level of the taxonomy to up to 0.40 at the lowest level. To further enhance the practical utility of our findings, we also evaluate multiple strategies for assigning interpretable labels to the identified clusters. The experiments and benchmark are fully reproducible and available at https://github.com/ds4dh/CBMS2025stratification.
Abstract:Herein we review aspects of leading-edge research and innovation in chemistry which exploits big data and machine learning (ML), two computer science fields that combine to yield machine intelligence. ML can accelerate the solution of intricate chemical problems and even solve problems that otherwise would not be tractable. But the potential benefits of ML come at the cost of big data production; that is, the algorithms, in order to learn, demand large volumes of data of various natures and from different sources, from materials properties to sensor data. In the survey, we propose a roadmap for future developments, with emphasis on materials discovery and chemical sensing, and within the context of the Internet of Things (IoT), both prominent research fields for ML in the context of big data. In addition to providing an overview of recent advances, we elaborate upon the conceptual and practical limitations of big data and ML applied to chemistry, outlining processes, discussing pitfalls, and reviewing cases of success and failure.