Abstract:Steering vectors are a lightweight method for controlling text properties by adding a learned bias to language model activations at inference time. So far, steering vectors have predominantly been evaluated in multiple-choice settings, while their effectiveness in free-form generation tasks remains understudied. Moving "Beyond Multiple Choice," we thoroughly evaluate the effectiveness of steering vectors in adaptively controlling topical focus, sentiment, toxicity, and readability in abstractive summaries of the NEWTS dataset. We find that steering effectively controls the targeted summary properties, but high steering strengths consistently degrade both intrinsic and extrinsic text quality. Compared to steering, prompting offers weaker control, while preserving text quality. Combining steering and prompting yields the strongest control over text properties and offers the most favorable efficacy-quality trade-off at moderate steering strengths. Our results underscore the practical trade-off between control strength and text quality preservation when applying steering vectors to free-form generation tasks.
Abstract:Steering vectors are a lightweight method to control language model behavior by adding a learned bias to the activations at inference time. Although steering demonstrates promising performance, recent work shows that it can be unreliable or even counterproductive in some cases. This paper studies the influence of prompt types and the geometry of activation differences on steering reliability. First, we find that all seven prompt types used in our experiments produce a net positive steering effect, but exhibit high variance across samples, and often give an effect opposite of the desired one. No prompt type clearly outperforms the others, and yet the steering vectors resulting from the different prompt types often differ directionally (as measured by cosine similarity). Second, we show that higher cosine similarity between training set activation differences predicts more effective steering. Finally, we observe that datasets where positive and negative activations are better separated are more steerable. Our results suggest that vector steering is unreliable when the target behavior is not represented by a coherent direction.