Abstract:Location-based services often require users to share sensitive locational data, raising privacy concerns due to potential misuse or exploitation by untrusted servers. In response, we present VeLoPIR, a versatile location-based private information retrieval (PIR) system designed to preserve user privacy while enabling efficient and scalable query processing. VeLoPIR introduces three operational modes-interval validation, coordinate validation, and identifier matching-that support a broad range of real-world applications, including information and emergency alerts. To enhance performance, VeLoPIR incorporates multi-level algorithmic optimizations with parallel structures, achieving significant scalability across both CPU and GPU platforms. We also provide formal security and privacy proofs, confirming the system's robustness under standard cryptographic assumptions. Extensive experiments on real-world datasets demonstrate that VeLoPIR achieves up to 11.55 times speed-up over a prior baseline. The implementation of VeLoPIR is publicly available at https://github.com/PrivStatBool/VeLoPIR.
Abstract:Homomorphic encryption (HE) is pivotal for secure computation on encrypted data, crucial in privacy-preserving data analysis. However, efficiently processing high-dimensional data in HE, especially for machine learning and statistical (ML/STAT) algorithms, poses a challenge. In this paper, we present an effective acceleration method using the kernel method for HE schemes, enhancing time performance in ML/STAT algorithms within encrypted domains. This technique, independent of underlying HE mechanisms and complementing existing optimizations, notably reduces costly HE multiplications, offering near constant time complexity relative to data dimension. Aimed at accessibility, this method is tailored for data scientists and developers with limited cryptography background, facilitating advanced data analysis in secure environments.