Abstract:This study enhances Jiang et al.'s compression-based classification algorithm by addressing its limitations in detecting semantic similarities between text documents. The proposed improvements focus on unigram extraction and optimized concatenation, eliminating reliance on entire document compression. By compressing extracted unigrams, the algorithm mitigates sliding window limitations inherent to gzip, improving compression efficiency and similarity detection. The optimized concatenation strategy replaces direct concatenation with the union of unigrams, reducing redundancy and enhancing the accuracy of Normalized Compression Distance (NCD) calculations. Experimental results across datasets of varying sizes and complexities demonstrate an average accuracy improvement of 5.73%, with gains of up to 11% on datasets containing longer documents. Notably, these improvements are more pronounced in datasets with high-label diversity and complex text structures. The methodology achieves these results while maintaining computational efficiency, making it suitable for resource-constrained environments. This study provides a robust, scalable solution for text classification, emphasizing lightweight preprocessing techniques to achieve efficient compression, which in turn enables more accurate classification.
Abstract:This study focuses on enhancing rice leaf disease image classification algorithms, which have traditionally relied on Convolutional Neural Network (CNN) models. We employed transfer learning with MobileViTV2_050 using ImageNet-1k weights, a lightweight model that integrates CNN's local feature extraction with Vision Transformers' global context learning through a separable self-attention mechanism. Our approach resulted in a significant 15.66% improvement in classification accuracy for MobileViTV2_050-A, our first enhanced model trained on the baseline dataset, achieving 93.14%. Furthermore, MobileViTV2_050-B, our second enhanced model trained on a broader rice leaf dataset, demonstrated a 22.12% improvement, reaching 99.6% test accuracy. Additionally, MobileViTV2-A attained an F1-score of 93% across four rice labels and a Receiver Operating Characteristic (ROC) curve ranging from 87% to 97%. In terms of resource consumption, our enhanced models reduced the total parameters of the baseline CNN model by up to 92.50%, from 14 million to 1.1 million. These results indicate that MobileViTV2_050 not only improves computational efficiency through its separable self-attention mechanism but also enhances global context learning. Consequently, it offers a lightweight and robust solution suitable for mobile deployment, advancing the interpretability and practicality of models in precision agriculture.