Abstract:Scientific discovery is driven by the iterative process of background research, hypothesis generation, experimentation, and data analysis. Despite recent advancements in applying artificial intelligence to scientific discovery, no system has yet automated all of these stages in a single workflow. Here, we introduce Robin, the first multi-agent system capable of fully automating the key intellectual steps of the scientific process. By integrating literature search agents with data analysis agents, Robin can generate hypotheses, propose experiments, interpret experimental results, and generate updated hypotheses, achieving a semi-autonomous approach to scientific discovery. By applying this system, we were able to identify a novel treatment for dry age-related macular degeneration (dAMD), the major cause of blindness in the developed world. Robin proposed enhancing retinal pigment epithelium phagocytosis as a therapeutic strategy, and identified and validated a promising therapeutic candidate, ripasudil. Ripasudil is a clinically-used rho kinase (ROCK) inhibitor that has never previously been proposed for treating dAMD. To elucidate the mechanism of ripasudil-induced upregulation of phagocytosis, Robin then proposed and analyzed a follow-up RNA-seq experiment, which revealed upregulation of ABCA1, a critical lipid efflux pump and possible novel target. All hypotheses, experimental plans, data analyses, and data figures in the main text of this report were produced by Robin. As the first AI system to autonomously discover and validate a novel therapeutic candidate within an iterative lab-in-the-loop framework, Robin establishes a new paradigm for AI-driven scientific discovery.
Abstract:There is widespread optimism that frontier Large Language Models (LLMs) and LLM-augmented systems have the potential to rapidly accelerate scientific discovery across disciplines. Today, many benchmarks exist to measure LLM knowledge and reasoning on textbook-style science questions, but few if any benchmarks are designed to evaluate language model performance on practical tasks required for scientific research, such as literature search, protocol planning, and data analysis. As a step toward building such benchmarks, we introduce the Language Agent Biology Benchmark (LAB-Bench), a broad dataset of over 2,400 multiple choice questions for evaluating AI systems on a range of practical biology research capabilities, including recall and reasoning over literature, interpretation of figures, access and navigation of databases, and comprehension and manipulation of DNA and protein sequences. Importantly, in contrast to previous scientific benchmarks, we expect that an AI system that can achieve consistently high scores on the more difficult LAB-Bench tasks would serve as a useful assistant for researchers in areas such as literature search and molecular cloning. As an initial assessment of the emergent scientific task capabilities of frontier language models, we measure performance of several against our benchmark and report results compared to human expert biology researchers. We will continue to update and expand LAB-Bench over time, and expect it to serve as a useful tool in the development of automated research systems going forward. A public subset of LAB-Bench is available for use at the following URL: https://huggingface.co/datasets/futurehouse/lab-bench