Abstract:The rapid evolution of network infrastructure is bringing new challenges and opportunities for efficient network management, optimization, and security. With very large monitoring databases becoming expensive to explore, the use of AI and Generative AI can help reduce costs of managing these datasets. This paper explores the use of Large Language Models (LLMs) to revolutionize network monitoring management by addressing the limitations of query finding and pattern analysis. We leverage LLMs to enhance anomaly detection, automate root-cause analysis, and automate incident analysis to build a well-monitored network management team using AI. Through a real-world example of developing our own OFCNetLLM, based on the open-source LLM model, we demonstrate practical applications of OFCnetLLM in the OFC conference network. Our model is developed as a multi-agent approach and is still evolving, and we present early results here.
Abstract:Network traffic classification that is widely applicable and highly accurate is valuable for many network security and management tasks. A flexible and easily configurable classification framework is ideal, as it can be customized for use in a wide variety of networks. In this paper, we propose a highly configurable and flexible machine learning traffic classification method that relies only on statistics of sequences of packets to distinguish known, or approved, traffic from unknown traffic. Our method is based on likelihood estimation, provides a measure of certainty for classification decisions, and can classify traffic at adjustable certainty levels. Our classification method can also be applied in different classification scenarios, each prioritizing a different classification goal. We demonstrate how our classification scheme and all its configurations perform well on real-world traffic from a high performance computing network environment.