Abstract:This paper addresses online learning with ``corrupted'' feedback. Our learner is provided with potentially corrupted gradients $\tilde g_t$ instead of the ``true'' gradients $g_t$. We make no assumptions about how the corruptions arise: they could be the result of outliers, mislabeled data, or even malicious interference. We focus on the difficult ``unconstrained'' setting in which our algorithm must maintain low regret with respect to any comparison point $u \in \mathbb{R}^d$. The unconstrained setting is significantly more challenging as existing algorithms suffer extremely high regret even with very tiny amounts of corruption (which is not true in the case of a bounded domain). Our algorithms guarantee regret $ \|u\|G (\sqrt{T} + k) $ when $G \ge \max_t \|g_t\|$ is known, where $k$ is a measure of the total amount of corruption. When $G$ is unknown we incur an extra additive penalty of $(\|u\|^2+G^2) k$.
Abstract:We present new algorithms for online convex optimization over unbounded domains that obtain parameter-free regret in high-probability given access only to potentially heavy-tailed subgradient estimates. Previous work in unbounded domains considers only in-expectation results for sub-exponential subgradients. Unlike in the bounded domain case, we cannot rely on straight-forward martingale concentration due to exponentially large iterates produced by the algorithm. We develop new regularization techniques to overcome these problems. Overall, with probability at most $\delta$, for all comparators $\mathbf{u}$ our algorithm achieves regret $\tilde{O}(\| \mathbf{u} \| T^{1/\mathfrak{p}} \log (1/\delta))$ for subgradients with bounded $\mathfrak{p}^{th}$ moments for some $\mathfrak{p} \in (1, 2]$.